Unsteady flow and particle migration in dense, non-Brownian suspensions

نویسندگان

  • Michiel Hermes
  • Ben M. Guy
  • Wilson C. K. Poon
  • Guilhem Poy
  • Michael E. Cates
  • Matthieu Wyart
چکیده

We present experimental results on dense corn-starch suspensions as examples of non-Brownian, nearly hard particles that undergo continuous and discontinuous shear thickening (DST) at intermediate and high densities, respectively. Our results offer strong support for recent theories involving a stress-dependent effective contact friction among particles. We show, however, that in the DST regime, where theory might lead one to expect steady-state shear bands oriented layerwise along the vorticity axis, the real flow is unsteady. To explain this, we argue that steady-state banding is generically ruled out by the requirement that, for hard non-Brownian particles, the solvent pressure and the normal-normal component of the particle stress must balance separately across the interface between bands. (Otherwise, there is an unbalanced migration flux.) However, long-lived transient shear bands remain possible. VC 2016 The Society of Rheology. [http://dx.doi.org/10.1122/1.4953814]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Normal stresses in non - Brownian suspensions : bulk rheology and particle migration

Submitted for the DFD10 Meeting of The American Physical Society Normal stresses in non-Brownian suspensions: bulk rheology and particle migration FRANCOIS BOYER, OLIVIER POULIQUEN, ELISABETH GUAZZELLI, IUSTI, CNRS Aix-Marseille Universite — Concentrated suspensions are known to exhibit non-Newtonian effects and classical rheology often fails to give a consistent description of actual flows. Pa...

متن کامل

Shear thickening regimes of dense non-Brownian suspensions.

We propose a unifying rheological framework for dense suspensions of non-Brownian spheres, predicting the onsets of particle friction and particle inertia as distinct shear thickening mechanisms, while capturing quasistatic and soft particle rheology at high volume fractions and shear rates respectively. Discrete element method simulations that take suitable account of hydrodynamic and particle...

متن کامل

Development of particle migration in pressure-driven flow of a Brownian suspension

An experimental investigation into the influence of Brownian motion on shear-induced particle migration of monodisperse suspensions of micrometre-sized colloidal particles is presented. The suspension is pumped through a 50 μm× 500 μm rectangular crosssection glass channel. The experiments are characterized chiefly by the sample volume fraction (φ=0.1− 0.4), and the flow rate expressed as the P...

متن کامل

Unsteady convective flow for MHD powell-eyring fluid over inclined permeable surface

The current article has investigated unsteady convective flow for MHD non-Newtonian Powell-Eyring fluid embedded porous medium over inclined permeable stretching sheet. We have pondered the thermophoresis parameter, chemical reaction, variable thermal conductivity, Brownian motion, variable heat source and variable thermal radiation in temperature and concentration profiles. Using similar trans...

متن کامل

Migration and fractionation of deformable particles in microchannel.

The complexity of the coupling between soft particle deformation and fluid perturbation has limited studies of soft particle hydrodynamics to dilute suspensions. A hybrid Brownian dynamics-lattice Boltzmann method is presented that models nondilute soft spherical deformable particle (DP) suspensions in flow. Dependences on particle size and density are investigated for suspensions with over 100...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017